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SUMMARY 
A new symmetric formulation of the two-dimensional shallow water equations and a streamline upwind Petrov- 
Galerkm (SUPG) scheme are developed and tested. The symmetric formulation is constructed by means of a 
transformation of dependent variables derived fkom the relation for the total energy of the water column. This 
symmetric form is well suited to the SUPG approach as seen in analogous treatments of gas dynamics problems 
based on entropy variables. Particulars related to the construction of the upwind test functions and an appropriate 
discontinuity-capturing operator are included. A formal extension to the viscous, dissipative problem and a 
stability analysis are also presented. Numerical results for shallow water flow in a channel with (a) a step transition, 
(b) a curved wall transition and (c) a straight wall transition are compared with experimental and other 
computational results from the literature. 

KEY WORDS: shallow water equations; entropy variables; streamline upwind Petrov-Galerkin; symmetric formulations; finite 
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1. INTRODUCTION 

The shallow water equations for free surface flows may be introduced when the free surface wavelength 
is very long compared with the depth. Finite element models based on various forms of the shallow 
water equations have been successfully applied in coastal and estuarine hydrodynamics, in part because 
of the relative ease with which irregular boundaries and bathymetry can be handled.'" For example, 
finite element schemes have been constructed for the primitive variable or mixed system as well as 
higher-order, wave equation  formulation^.^ There have also been investigations of other approaches 
such as the harmonic-in-time method6 and least squares mixed methods? 

In general the shallow water equations constitute a hyperbolic or incompletely parabolic system, 
solutions to which can exhibit discontinuities and steep layers. Petrov-Galerkin finite element schemes 
have been shown to be effective in handling the numerical difficulties associated with this class of 
problems, particularly if the system of conservation laws can be written in symmetric form. In the gas 
dynamics literature, for example, the streamline upwind Petrov-Galerkin (SUPG) and 
variants of this approach'0*" have been developed and used to solve the symmetrized Euler and 
Navier-Stokes equations over a wide range of subcritical and supercritical flow conditions. An 
impediment to the application of this class of stabilized fmite element methods for shallow water 
problems has been the unavailability of a symmetric form of the conservation equations. 
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We address this issue in the present work by presenting a symmetric, conservation form of the shallow 
water system. This is accomplished by the introduction of the total energy of the water column to 
construct a change of dependent variables. We then implement an SUPG finite element scheme. Next an 
analysis of the scheme including weak stability and the inclusion of horizontal viscosity are briefly 
considered. Numerical studies for three channel flows complete the investigation. 

2. SYMMETRIC SHALLOW WATER SYSTEM 

Consider a body of water with mean free surface level in the (xl, x2)  plane. The bottom depth is given by 
the positive hc t ion  h(x, ,  x2)  and the unknown surface elevation ~ ( x , ,  x2,  t )  is measured from the mean 
free surface. Thus the total height is H = h + q .  A body force due to gravity is present and is assumed to 
act in the negative x,-direction. The problem is to determine the free surface elevation q(xl ,  x2, t )  and 
depth-averaged velocity u(xl , x2, t )  = (ul , u ~ ) ~  for given bathymetry, boundary and initial conditions. 

Under certain standard assumptions the incompressible Navier-Stokes equations may be depth 
averaged to obtain the shallow water equations (e.g. Reference 14). If the additional assumption of 
negligible Coriolis effects is made, these equations may be written in divergence form as 

U,f + V F(U) = S(U) (1) 

for the state vector U = (H, Hut ,  H u ~ ) ~ .  In (1) the subscript comma denotes differentiation with respect 
to the indicated variable. The divergence term may be written as 

v - F(Fl),q + (F2)J2 I (2) 

where 

and g is the acceleration due to gravity. Finally, the source term is 

where the bottom friction stresses are given by the multidimensional extension of the Manningxhkzy 
f~ rmula '~ . ' ~  as 

In (6), n is Manning's roughness coefficient, Vis the depth-averaged speed, the conversion factor 
a = 1 .O for metric units and 2.21 for Imperial units and the assumption of a wide channel has been 
made so that the hydraulic radius is given by the depth.I5 We remark that Coriolis effects may be 
included by appropriately modifying S. 

Rather than the divergence form (l), the shallow water equations may also be written using the chain 
rule as the quasi-linear system 

U,f + Al(U)qxl + A,(U)U,, = S(U), (7) 
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where the flux Jacobian matrices Al(U) and A2(U) are given by 

It is well known that the system (7) (or equivalently (1)) is hyperbolic; i.e. that the Jacobiam Ai have real 
eigenvalues and a complete set of eigenvectors (e.g. Reference 14). For most systems of this type that 
arise from convective transport models, the flux Jacobian matrices A, and A, are not symmetric, nor can 
they usually be simultaneously diag~nalized.'~ Indeed, this is the case for the shallow water system 
presently under consideration. Similar types of hyperbolic systems arise in gas dynamics and other 
applications. These systems may be symmetrized if an appropriate generalized entropy function exists 
as shown in References 18-20. Finite element methods based on these transformed systems written in 
terms of the so-called entropy variables have been developed for gas dynamics These 
methods are based on the analysis of Harten,18 who investigated the symmetrization of conservation 
laws that have associated, generalized entropy hctions. In the case of the compressible Navier-Stokes 
equations with heat conduction, Hughes et a1.I9 have shown that symmetrization occurs only if the 
generalized entropy functin is at most trivially different from the physical entropy. With respect to the 
shallow water equations, Tadmo?' used the total energy as a generalized entropy function and derived a 
skew-self-adjoint form of the shallow water equations in terms of the resulting variables. A theorem for 
hyperbolic conservation systems is presented in the same paper, which establishes an equivalence 
among the various properties of symmetrizability, having an entropy function and having a skew-self- 
adjoint form. 

In Reference 21 we reviewed the derivation of the variables presented in Reference 20, derived the 
associated symmetric form of the system (7) and presented numerical results using a one-dimensional 
SUPG method. In the present study we give the symmetric formulation, generalize the SUPG method to 
two dimensions and compute steady state solutions for 2D channel flows. Finally, we show in the 
Appendix that the incompletely parabolic system of shallow water equations that results when viscous 
stresses are included in the formulation is also symmetrized when written in terms of these new 
variables. 

To proceed, let us define a change of dependent variables, U = U(V), under which the new flux 
Jacobians of the resulting system are symmetric, If the chain rule is applied to (7), the result may be 
written as 

where 

au A,=- av 

and Ai = AiA, for i = 1,2. The change of variables is to be chosen so that A, is symmetric and positive 
definite and the new flux Jacobians A1 and & are symmebic. Under these conditions, (9) is by 
definition a symmetric hyperbolic system. The symmetric form of the transport equations is interesting 
because weighted residual formulations based upon the symmetric form automatically possess certain 
stability proper tie^.'^**^ We address this issue further in the Appendix. 



32 S. W. BOVA AND G. F. CAREY 

Let us assume that an appropriate (convex), generalized entropy function 9 = 9 ( U )  can be 
identified. Then the change of variables may be obtained by setting VT = W/aU. Convexity of 9 
is necessary but not sufficient to guarantee ~ymmetrization.'~ There must also exist scalar-valued 
functions ci associated with 9 such that 

aci 
au - = VTAi. 

These functions are called entropy fluxes. If 9 is convex and corresponding entropy fluxes exist, then 
the system can be symmetrized. 

It is convenient to non-dimensionalize the governing equations before deriving the symmetric form 
for the shallow water system. This normalization is accomplished by introducing a length scale Ho and a 
velocity scale uo = , / (gHo).  The time is non-dimensionalized by the ratio Ho/uo. The resulting non- 
dimensional system is identical with (l), with the definition of U unchanged. Hence, for notational 
brevity, we do not introduce new symbols for the scaled system. The non-dimensional flux and source 
vectors are given by 

Fl(U) = (Hu,, Hu: + H 2 / 2 ,  H U ~ U , ) ~ ,  (12) 

and 

respectively, with 

and the quantity n: = n2g/H,"3. The non-dimensional flux Jacobians are given by (8) with g replaced 
by unity. It should be understood that all subsequent equations are to be regarded as non-dimensional. 

The depth-averaged sum of the potential and kinetic energies of the water column may be written as 

H 2  + HV2 9= 
2 .  

Since this quantity must always decrease across a bore, we choose it to be the non-dimensional, 
generalized entropy function. This choice leads to the change of variables 

T a9 v = - au = (H - v 2 / 2 ,  241, u2). 

It may be noted that the new variables are similar to the primitive variable form of the equations that is 
usually considered (e.g. Reference 16), in the sense that V2 and V3 are simply the Cartesian velocity 
components. However, the proposed variables differ in that instead of the surface elevation, V, may be 
interpreted as the difference in the potential and kinetic energies. 

Differentiation of ( 1  7 )  with respect to U results in the symmetric matrix 
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It may be shown that the determinant of &-' is 1/H2. Consequently, &-I never becomes singular for 
physical values of Y The symmetrizer may be found by inverting (18) to obtain 

The corresponding entropy fluxes follow on integrating (1 1) and may be written as 

oi = ui(.2 +$) for i = 1,2. 

Finally, the symmetric, non-dimensional flux Jacobian matrices may be obtained after postmultiplying 
the flux Jacobian matrices Ai, i = 1,2, by &. This multiplication leads to the matrices 

with pi  = H + u!, i = 1,2. 
We remark that the flux vectors are not homogeneous functions of Y If this were the case, then by 

Euler's theorem on homogeneous functions they would satisfy y*i(V) = &(V)V, where y is the degree 
of homogeneity. For example, the Euler equations of gas dynamics written in the form (7) have 
homogeneous flux functions of degree one: they satisy F,(U) = A,(U)U. This property may be useful 
for performing stability analyses or implementing flux split algorithms. The lack of homogeneous flux 
functions is not a major disadvantage for the proposed symmetric formulation of the shallow water 
equations since the equations do not have this property even when written in the more familiar 
conservation form (7). 

This completes the transformation to the symmetric form of the shallow water equations (9), with the 
definitions (17) and (19H21). In the next section we develop a streamline upwind Petrov-Galerkin 
finite element formulation based on this symmetric system. 

3. PETROV-GALERKTN FORMULATION 

The finite element method used in the present study is based on the approach of Hughes and Mallet,S''O 
who originally applied it to the Euler equations of gas dynamics. The variational formulation is obtained 
by taking a duality pairing of the transport equations with test functions and integrating over the domain. 
Thus (9) becomes 

WT(&V,, + A T W  - S) m = 0, J, 
where AT = (Al, &) and 
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For the Petrov-Galerkin formulation the test functions are defined as the standard Galerkin test 
functions plus a bias term? (For the class of methods considered here, this bias term may be regarded as 
a directional derivative.) More specifically, we set 

w = W + +ATvw + OTVW, (23) 

where + denotes a symmetric, positive semidefinite matrix of intrinsic time scales which we discuss in 
detail later in this section. Briefly, it acts to normalize the directional derivative ATV. A discontinuity- 
capturing operator gT = (gT, 9;) is useful for eliminating spurious oscillations in the vicinity of local, 
steep gradients. Note that i f f  = d = 0, the Galerkin method is obtained. 

If (23) is substituted into (22) and the Gauss divergence theorem is applied, the result may be written 
as 

(24) 
where F, = Flnl  + F2n2 and nl and n2 are the components of the local, outward, unit, normal vector. 
The term on the left side of (24) leads to a mass matrix. The first two terms on the right arise from the 
application of the divergence theorems to the convective flux vector. The third term on the right is due to 
the upwinding on the flux term, while the final term accounts for the effects of the source function. 

The discretization proceeds by introducing the usual semidiscrete finite element expansion 
N 

where N is the number of nodes in the finite element mesh and lG;.(xl, x 2 )  are the basis functions. (Linear 
Lagrantge basis hc t ions  are used exclusively in the present work.) Substituting Vh for V in (24) and 
setting the components of W, successively to +;, the semidiscrete system of ODES has the form 

N 

j= 1 
1 NiiVj(t) = fi(V(t)), i = 1,. . . , N ,  (26) 

where Vj(t) indicates the time rate of change of the entropy variables associated with nodej and N is the 
non-linear mass matrix whose 3 x 3 block associated with nodes i andj  is given by 

N.. = { P + i  + +i,x,(Ai+ + 9 1 )  + $i,x2('2+ + g2)1&}+j m- (27) 
y la 

Similarly, the block of the forcing function associated with node i is given by 

fi = - J, + i F n  d r  + J t+i,xl@l + +i,x2p2) 
R 

(A1 + + 9 1 )  + +i,x2 G 2 +  + 92)lATW dQ 

[I+i + $i,xl(A1+ + 9 1 )  + +i,x2(&+ + 9 2 1 1 ' d ~ .  

(28) 
- J, 

J, + 

Except for the specification of the operators + and 9, the spatial discretization is complete. The selection 
of the matrix of intrinsic time scales, +, is an open problem: linear error estimates, convergence proofs 
and dimensional analysis provide design conditions to be satisfied, but are insufficient to provide a 
unique definition." Moreover, the choice of + is somewhat dependent on the problem being solved. 
Hughes and Mallet' have presented a formula that works well in practice for the compressible Navier- 



TWO-DIMENSIONAL SHALLOW WATER EQUATIONS 35 

Stokes equations. Shakib et al." have proposed a more general form. In general, ? is a symmetric, 
positive semidefinite matrix that, loosely speaking, acts to normalize the magnitude of the test function 
bias. For example, consider the one-dimensional, scalar convection equation. In this case + reduces to a 
scalar quantity and it may be shown that an optimal choice is the ratio of the local element size to the 
magnitude of the convective velocity.8 For systems of equations the situation is complicated by the 
presence of multiple wave modes and in general an eigenproblem must be solved to obtain a formula for 
?. This situation is discussed in Reference 11, from which we obtain the non-dimensional expression 

(29) + = -&'(A: + A$)-'/', 

where t = , / (Me) is the local estimate of the non-dimensional element length scale (A, is the area of 
element e) and the Ai are the flux Jacobians (8). Note that the inverse square root is taken on a 3 x 3 
matrix. Furthermore, ? may be interpreted as an inverse norm of the rectangular, convective operator A 
with respect to &. To compute ?, we write (29) as 

1 
2 

+ = &-lg-1/2 (30) 

where 
4 
P B = -(A: + A:). 

Then we solve the associated eigenproblem to factor using the similarity transformation 

= Mdiag(Bk)M-', (32) 

where M is a modal matrix, the columns of which are the eigenvectors ek, k = 1 , 2 , 3 ,  and the B k  are the 
corresponding eigenvalues. It is important to note that the ek are scaled so that MMT = A,,.8 In practice, 
since ? is symmetric, it may be computed from the expansion 

where rk = I / d B k  and each eigenvector +k = b-lek. 
The eigenvalues zi ,  i = 1 , 2 , 3 ,  are given by 

1 
J(V2 + H ) '  

z3 = J21 
z1,2 = J(3H + 2Vz B) ' 

where /3 = J(Hz + 16HV'). The eigenvectors are given by 

with scale factors 

(34) 
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The motivation and derivation of the discontinuity-capturing operator (DCO) used in the present 
study is given in Reference 10 for the Euler equations of gas dynamics. For completeness, we present 
below the final formulae. The DCO is computed as the product 

9 = All+2. (39) 

The matrix All may be interpreted as the projection of A onto the direction W and is defined by 

where diag2(A,,) denotes a 6 x 6 operator with two copies of A, on the diagonal and zeros elsewhere. In 
(40) we have also introduced the norm 

IWI, = J[(W)Tdiag2(A,,)WI. (41) 

Note that A,, is not symmetric. The operator 1, in (39) is a symmetric, positive semidefinite, rank-one 
matrix that contains the time scales associated with the gradient information. It is computed according to 

+2 = max(o,zll - z)+ll+;? (42) 

with the eigenvector 

A,,-'ATw 

IA WIG1 
-T 

Computing the eigenvalue for (42) fist requires the evaluation of the scalar 

where the metric derivative 

(43) 

has been introduced, with 
eigenvalue in (42) is completed by constructing 

and tz the computational co-ordinates. Then the definition of the 

z = 1A,+q:. (46) 

This completes the specification of the contribution to the semidiscrete ODE system (26). Now (26) can 
be integrated time-accurately using standard ODE system integrators to compute V(t )  and the elevation 
can be obtained by postprocessing V If a steady state solution exists, then from (26) it satisfies f(v) = 0. 
Here f is a vector of length 3N whose block associated with node i is given by (28) and v similarly 
denotes the assembled global vector of entropy variables. This non-linear system can be scaled or 
preconditioned in a variety of ways. For example we can premultiply by a preconditioning matrix 
derived from the mass matrix on the left side of (26); such strategies have been previously applied with 
some success. In practice the preconditioner Q-' should be simple and easily constructed; hence a 
diagonal matrix is frequently chosen. Assuming a suitable Q-' can be found, the stationary problem 
then involves solving Q - ' T  = 0. This solution can be carried out using an appropriate iterative method 
such as Newton or Picard iteration. 
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An alternative approach that is gaining popularity is to develop a time-iterative recursion based on the 
form of (26) in which an iterate is 'time stepped' to the steady state solution. Since this may involve both 
modification of the matrix on the left side of (26) as well as large time steps, this approach may not be 
time-accurate. Instead it should be interpreted as a convenient choice of point- or block-iterative 
recursion with an associated preconditioner.22 This idea is presented in more detail in the next section 
and is applied in the numerical studies presented later. 

4. TIME-ITERATIVE SOLUTION 

Since we are really interested in obtaining an effective iterative scheme for the preconditioned stationary 
problem, let us first scale (26) to obtain the global system. 

(47) Q-lm(t) = Q-lf .  

Here Q-' (as well as its inverse Q) is a suitable global matrix of size 3N x 3Nwith 3 x 3 blocks Qi on 
the diagonal and N is the 3N x 3N matrix whose block elements Nu are given by (27). Now the global 
mass matrix assembled from the blocks in (27) can be written as 

N = N G  + NU, (48) 

where NG represents the Galerkin mass matrix for the transformed system whose blocks are given by 

N G ~  = J, + i + j h  (49) 

and Nu denotes the contributions arising from the upwinding. In the present work we approximate NG 
by NL using underintegration via the appropriate Newton-Cotes rule (mass or capacitance lumping) and 
set Q = N,. Then the diagonal blocks of the preconditioner are given by Qi = L i b i ,  where bi 
represents (1 9) evaluated at mesh point i and Li is the standard Galerkin lumped mass matrix term for 
node i. (For linear triangles, Li is equal to one-third the sum of the area of the triangles whose support 
includes node i). Then 

1 
Q:' = - &-.l 
' Li ' 

is the block inverse for constructing the global preconditioner. 
Hence (47) may be approximated as 

(I + Q-"")v(t) = Q-9, 
which can be integrated to obtain a time-accurate or steady state solution. We remark that several 
algorithms can be derived from (51). For example, the product Q-'NUv(t) can be transposed to the 
right side and 'lagged' to obtain an approximate scheme that can be used for explicit, time-accurate 
solutions. Similarly, the diagonal blocks associated with these terms can be retained on the left and the 
off-diagonal blocks transposed to the right to develop a related approach. Of course, fully implicit, 
transient computations for the system (47) can also be implemented. Finally, for steady-state 
calculations, these contributions can simply be neglected to yield a block-iterative recursion. In the 
present study we neglect these contributions and use forward Euler time integration. This generates the 
following recursion for the block of nodal unknowns at grid point i: for iterate n, compute 

(52) 
At AVi = - (4;' fi)(") 
Li 
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explicitly at each node of the grid, where AVi = Vi(n+') - Vp). Since the scheme is not time-accurate, 
(52) should be interpreted as a basic iterative method with relaxation factor At. This suggests that 
convergence to steady state may be accelerated by varying At both between iterations (a varying global 
time step) and spatially with the grid points (a varying local time step Ati). Then (52) becomes 

In the computations presented later, At?) is computed elsewhere as follows. The time step is first 
initialized to a large value. Then for each element Re we compute 

where V, is the magnitude of the velocity component normal to the edge opposite node i ,  W is the 
Courant number and c = - 2 4  V/aH4I3. (The Courant number is specified as input data for each 
problem and in practice the largest stable value should be used.) 

5 .  BOUNDARY CONDITIONS 

We consider two basic types of boundary conditions: the first type satisfies an inflow/outtlow condition 
in which the normal component of the velocity is non-zero; the second type is a zero-mass-flux 
boundary which implies that the normal velocity component vanishes and the flow is tangential to the 
boundary. In each case we evaluate the normal flux #,, in the boundary integral that appears in (28) using 
the curretn iterate for V. Then we use the method of characteristic  projection^^^-'^ to determine the 
number of boundary conditions to apply: for a supercritical inflow, Dirichlet data are applied on all 
equations at the associated node; for a supercritical outflow, no boundary conditions are applied; for a 
subcritical inflow, two boundary conditions are required; finally, only one boundary condition is 
necessary at a subcritical outflow. At a zero-mass-flux boundary there also is only one incoming mode 
and it can be treated as a special case of subcritical outflow. 

The classification of the boundary type in two dimensions depends on the velocity component normal 
to the boundary, u,. Accordingly, the projections are defined by the eigenvalues and left eigenvectors of 
the non-dimensional flux Jacobian 

( 5 5 )  
0 " 1  

A, = Aln l  + Azn2 = Hnl - uIu, ulnl + u, 
Hn2 - U ~ U ,  u2nl u p 2  + u, 

The matrix (55 )  has eigenvalues 

with eigenvectors given by the columns of 

1 1 
u1 - n , , / H  u1 + n 1 J H  
u2 - n2JH u2 + n2JH -J(2H)nl 

(57) 
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We remark that the eigenvectors in (57) have been scaled so that TTT = &. Let the change in the 
characteristic variables be denoted Afi. Then this projection may be written as 

(58)  ~ i r  = T-IAU = T-*&AV 

or 

~ f i  = T ~ A V .  (59) 
Equation (59) can be written more explicitly in terms of changes in the depth and velocity components 
as 

where the tangential velocity component u, = -uln2 + u2nl. 
Zero-mass-flux boundaries correspond to boundaries along which the flow is locally tangent. In this 

case only the first mode is incoming, so only one boundary condition need be applied. That condition is 
of course u, = 0 equivalently Au, = 0. This condition can be enforced weakly by specifying u, = 0 in 
the boundary integral that appears in (28). Weak implementations, while convenient, satisfy the 
boundary constraints only in an average sense along the boundary. In our experience, substantial non- 
zero normal velocity components can accumulate at these boundary nodes even though they vanish in 
an average sense. This situation can lead to instabilities, particularly on coarse meshes. For this reason 
we project the velocities at each iteration so that the zero-mass-flux condition is satisfied strongly at the 
boundary nodes. We do this by projecting the second and thud components of AV and leaving the first 
component unconstrained. 

6 .  NUMERICALRESULTS 

In order to demonstrate the proposed method, we simulate the flow through three rectangular channels. 
For each of the following test cases the initial data consists of a Froude number Fr, a depth profile and a 
flow angle 8. Then the starting iterate at each node in the mesh is computed according to 

H( 1 - F? /2) 
V =  (Fr,/HcosO), 

FrJH sin 8 

except for nodes on the zero-mass-flux boundaries, in which case the tangential component of (61) is 
taken. For each of the following examples, W 0.2. 

6.1. Step Transition 

The first example is that of supercritical flow in a channel whose width is suddenly reduced from 9 to 
7 m. The contraction occurs 9.5 m downstream of the inlet boundary. The inlet Froude number (based 
on the incoming unit depth) is 2.5, the channel is 28-5 m long, has zero bed slope and no bottom 
friction. This example is obviously not a practical design, but has features that make it an interesting test 
case. The mesh of linear triangular elements used for this calculation has 1 120 nodes and 2073 triangles 
and is shown in Figure 1. The computed depth of the water column ranges from 043694 m to 3.441 m 
and contours are presented in Figure 2. It may be noted that the hydraulic jump is captured within a band 
of two elements in the streamwise direction; the irregularity in the contours in this region results from 
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Figure 1 .  Mesh for step transition: 1120 nodes and 2073 triangles. All units are metres 

the shape of this band. Immediately behind the jump, at the point (x,  y) = (1.744,5.000) m, the depth is 
3.099 m. This value compares well with the theoretical value of 3.071 m that should be obtained for a 
flow of unit depth and initial Froude number of 2.5.26 The computed Froude numbers are between 
2.405 x and 2.500 and are plotted in Figure 3. After passing through the hydraulic jump, the flow 
becomes subcritical, then becomes supercritical again as it rounds the comer. Near y = 0 at the face of 
the step the flow is nearly stagnant, then accelerates rapidly around the top of the step. Finally, the flow 
becomes nearly uniform again about 10 m downstream of the step. 

6.2. Curved Wall Transition 

This problem corresponds to a supercritical transition from a rectangular flume model of width 
ranging from 2 to 1 ft. The reduction in area begins at x = 20 ft and is accomplished using two circular 
arcs of radius 75 in and a transition length of 41.375 in. The flume is smooth and has a constant bed 
slope so that a uniform flow is achieved upstream of the transition. We follow Reference 27 and use a 
bed slope of 0.0125. The Froude number is 4.0 based on the incoming depth of 0.1 fi. Consequently, for 
a uniform flow to exist upstream of the transition, we must have Manning’s friction factor n = 0.005 in 

The mesh used in the present study has 4585 nodes and 8628 linear triangles, a detail of which is 
shown in Figure 4. The computed Froude numbers (not shown) vary from 4.020 to 1.691. Computed 
depth contours are shown in Figure 5. Waves of the same family intersect and merge into an oblique 
hydraulic jump. This occurs at both walls so that the two jumps intersect and reflect from the opposite 
wall. This interaction continues downstream, becoming progressively weaker. In the numerical solution 
the depth ranges from 0.3606 to 0.09908 ft, with the peak depth just downstream of the first intersection 
of the two oblique jumps. These extrema compare well with the experimentally observed values of 0.40 

(6). 

Y 

S 

0 X 

0 s is 

Figure 2. Depth contours for step transition problem. All units are metres 
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Figure 3. Contours of Froude number of step transition problem. All units are metres 

and 0.10 ft respectively. Figure 6 presents these experimental observations along with the numerical 
results of Berger,” who used a related SUPG method to discretize the conservation form of the 
equations using bilinear quadrilateral elements. These results compare well with those obtained via the 
proposed method. 

Finally, note that there is some mesh-related asymmetry in the contours shown in Figure 5. This may 
be explained by the fact that although the distribution of nodes is symmetric about the centreline of the 
flume, the orientation of triangles is not. This local grid orientation effect explains why the waves 
emanating from the lower wall are resolved more sharply relative to those which emanate from the upper 
wall. The waves generated by the lower boundary are roughly parallel to the triangle edges throughout 
most of the domain. In contrast, the waves generated by the upper boundary are roughly orthogonal to 
the triangle edges. Apparently, hydraulic jumps may be more highly resolved if the triangle edges are 
aligned with the front. This effect could be ameliorated through the use of an adaptive refinement 
algorithm which locally reduces the scale of the triangles (and therefore the numerical dissipation of the 
scheme) in the vicinity of the jumps. With respect to Figure 6, the experimental observations are 
asymmetric because of the difficulties associated with establishing a completely uniform flow in the 
laboratory; the numerical results are symmetric because of the use of the bilinear quadrilateral elements. 

6.3. Straight Wall Transition 

It is well known that the use of curved wall transitions (as in the above example) is generally a poor 
design practice for supercritical flows. From the standpoint of maximum wave height, a straight wall 
contraction is always a better choice for a given transition length.28 This example illustrates this 
principle. The transition in the above flume model is altered to a straight wall of length 4.758 ft and a 

Y 

Figure 4. Mesh detail for curved wall transition: total of 4585 nodes and 8628 triangles. All units are feet 



42 S. W. BOVA AND G. F. CAREY 
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Figure 5 .  Detail of depth contours for curved wall transition problem. All units are feet 

turning angle of 6". The transition length is increased with respect to that described for the problem in 
Section 6.2 so that the numerical results of this subsection may be compared with the experimental 
observations of Ippen and Dawson.28 The flume width, incoming Froude number and initial depth are 
unchanged from those given in Section 6.2. 

Since a symmetric solution is expected, we consider only one half of the flume. The mesh used has 
2100 nodes and 3828 linear triangles. A detail of this mesh is shown in Figure 7. Computed depth 
contours are shown in Figure 8. Comparing Figure 8 with Figure 5 ,  we again see that an oblique jump 
forms at the leading edge of the transition and intersects its counterpart that is generated by the lower 
half of the flume. In the present case, however, negative disturbances** are generated at the trailing edge 
of the transition that interact with the jump downstream and weaken their effect. In the numerical 
solution the depth ranges from 0.09876 to 0.2394 ft. These extrema can be compared with the 
experimentally observed values of 0.10 and 0.25 ft  respectively.28 The Froude numbers (not shown) 
range from 2.390 to 4.023. For a turning angle of 6" and initial Froude number of 4.0 the theoretical 

I 1 I I I I 

19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 
(b) 

Figure 6. Depth contours for curved wall transition problem: (a) experimental observations of Ippen and Dawson;28 (b) 
computational results of BergerZ7 All units are feet. After Reference 27 
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Figure 7. Mesh details for straight wall transition: total of 2397 nodes and 4480 triangles. All units are feet 

Y 

Figure 8. Detail of depth contours for straight wall transition problem. All units are feet 

values of the leading wave angle and depth ratio are 20" and 1-498 respectively.26 These values compare 
well with Figure 8. The maximum depth for the curved wall transition of Section 6.2 is much greater 
than that of the straight wall, because in the former case there are no negative disturbances to weaken the 
jumps. 

7. CONCLUDING REMARKS 

A symmetric form of the shallow water equations has been developed using variables derived from the 
total energy of the water column. In the Appendix we show that this choice of variables symmetrizes the 
system even in the presence of horizontal viscosity. The hyperbolic symmetric equations are used as a 
starting point for an SUPG finite element method. Forward Euler time integration with local time step 
adaptation was used to solve the resulting semidiscrete system of ODES to steady state. Test cases in two 
dimensions were considered and the proposed algorithms were evaluated for representative channels 
with supercritical transitions. The results agree well with those published by other authors and 
demonstrate that the new method can accurately solve the shallow water equations. 

The performance of the method for steady state problems is good, at least for the problems 
considered, and in practice is very stable. Each of the computations presented in Section 6 was 
performed in about 1CL20 min of CPU time on a DEC 3000 Alpha workstation. Forward Euler time 
stepping, while easily implemented, is relatively expensive and our software could benefit from a more 
sophisticated time-stepping strategy. For stationary problems, non-standard Runge-Kutta strategies that 
offer increased stability in exchange for relaxed time accuracy could provide a more efficient steady 
state solution algorithm (e.g. Reference 22). We plan to explore this issue further in future studies. 

The discontinuity-capturing operator considerably increases the robustness of the methodology. 
When all other factors were unchanged, the computations in Section 6 diverged if the DCO was not 
included. Solutions could still be obtained, but only for certain combinations of mesh size, starting 
iterate, time step, etc. 
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APPENDIX: INCOMPLETELY PARABOLIC SYSTEM 

Symmetric Form 

We now address the issue of symmetrizing the incompletely parabolic system 

u,t + Al(U)U,x, + A2(U)U,x2 = S(U) + v * [K(U(wI7 (62) 

where we have introduced the difisivity tensor K(U). For the shallow water system under 
consideration, K(U) results from a combination of the molecular and turbulent Reynolds stresses. 
Typically, these effects are modelled empirically (see e.g. Reference 16) so that K(U) may be written as 

where 

0 0  0 0  

K11(U)= ( - U I E I I  &11 :), K22(U)= ( -UIEIZ EIZ :), (64) 
- w 2 1  0 821 -U2E22 0 E22 

K,,(U) = KZ1(U) = 0 and the dispersion coefficients are represented by E ~ ,  i = 1 , 2 , j  = 1,2. Note that 
the matrices in (64) are not symmetric. We have already shown in Section 2 that the generalized entropy 
function (16) symmetrizes the flux Jacobians Ai, i = 1,2.  We show below that it also simultaneously 
symmetrizes K1 and K2,. 

The viscous term may be written as 

V . ( K W  = (KI1U,Xl),X, + (K22U,x2).x2. 

v - (KW) = (Kl I AoV,x, ),XI + (KZZ&V,X*),X* * 

(65) 

Application of the chain rule yields 

(66) 

Now let 
- 
Ky = KqA,. (67) 

Direct matrix multiplication 'reveals that 

0 0  0 0  0 

(68) 

Observe that the matrices in (68) are diagonal as well as symmetric and positive semidefinite. Hence the 
system (62) may be written as the symmetric, incompletely parabolic system 

&V,, + ATW = s + v * (KW), (69) 

where 
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Stability Bound 

Finally, we show that a weak stability result analogous to that presented for the compressible Navier- 
Stokes equations in Reference 19 can be demonstrated for the system (69). This derivation is more 
conveniently performed if indicial notation is f k t  introduced. For example, let V,i = V,, and also let a 
repeated subscript indicate summation. Then (69) may be written as 

AoV,, + A i y i  = S + (KgVj),i. 

The derivation proceeds from the weak statement 

WTIAoV,, + &V,, - S - (KgVj),i] dQ = 0 (71) s, 
for all admissible test hct ions W. In particular, setting W = V in (7 1) and integrating the second-order 
term by parts, we obtain 

PTAoV,, + VT&V,i - VTs - (VTKgVj),i] dQ = - V:kgVj dQ < 0, (72) 
fa J, 

since the Kg are symmetric and positive semidefinite. Now, by construction, 

and, using (1 l), 

By substitution of (1 4) and (1 7) the product VTS may be written as 

VTS = Huih,i - uibi. 

Combining (73>(75) in (72) we get 

(75) 

[F,t + ci,i - Hujh,i - uibi - (VTK..V .) .] CUn = - V:KgVj dQ GO. (76) 
I f  J J, 

Hence the weak solution V to the incompletely parabolic problem satisfies this growth inequality. 
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